
489 

5. MOROZOV V.M. and KALENOVA V.I., Estimation and Control in Non-stationary Linear Systems, 
Izd. MGU, Moscow, 1988. 

6. POPP K., Mathematical mcdelling and control system design of MAGLEV vehicles, in; Dynamics 
of High-Speed Vehicles, Springer, New York, 1982. 

7. TIMOSHENKO S., Static and Dynamic Problems in Elasticity Theory, Naukova Dumka, Kiev, 1975. 
8. Vibrations in Engineering, A Handbook, 1, Mashinostroyeniye, Moscow, 1978. 

Translated by Z.L. 

J. Appt. Maths Nechs, Vol. 55, No. 4, pp. 489-495, 1991 
Printed in Great Britain 

0021-8928/91 $15.00+0.00 
01992 Pergamon Press Ltd 

THE CONSTRUCTION OF SUCCESSIVE APPROXIMATIONS OF THE PERTURBATION METHOD 

FOR SYSTEMS WITH RANDOM COEFFICIENTS* 

A.S. KOVALEVA 

Moscow 

(Received 27 June 1990) 

A successive approximation procedure is proposed for stochastic systems 
reducible to standard form with non-"white noise" perturbations. To a 
first approximation, the solution of the perturbed system converges to 
the solution of some averaged deterministic system, and to a second 
approximation it converges to the solution of some averaged diffusion 
equation. Higher approximations enable one to estimate the deviations 
from a diffusion process. The convergence interval depends on the 
properties of the deterministic solution of the first-approximation 
equation. 

1. We consider systems with equations of motion reducible to the standard form 

z' = EF (t, z) -I- ERG (t, z), z (0) = a E R, 
(1.1) 

Here a is a small parameter. For a fixed I, the functions F (t, .) and are 
stochastic processes with expectations MF (t, .)= f (t, .), MG (t, .) = g (t, .). 

G (& *) 

Henceforth, we assume that the functions f, g are periodic or conditionally periodic 
in t and the means 

(I-2) 

exist uniformly in zESCR,; the function c(z) is defined similarly. Other restrictions 
on the coefficients of system (1.1) are stated below. 

So far, two special cases of system (1.1) have been considered 11, 2/. 
a) F(z)+ 0. Then /l/ under appropriate restrictions the solution s&s)= z*((t,) of 

system (1.1) weakly converges /3/ as e+O to a deterministic process &~(v,)- the solution 
of the equation 

ax&T, = F (2& 4 (0) = a, t, = et 
(1.3) 

If the solution zo(Tr) of Eq.ll.3) is asymptotically stable, 
is ensured for G,<v,<= /4/. 

then the convergence x~+zO 
If stability is not required, ze+z,, for 0 <<z,< T,, where 
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T, is independent of e /l, 4/. 
b) ,X (z) = 0. Then /2/ under appropriate restrictions the solution X(&E)= X.(t,) of 

system (1.1) converges weakly as e-c0 to a diffusion process - the solution of the 
stochastic differential equation 

aZ, = b (z,,)dr, + u (.z,)dw, z0 (0) = a, 2. = eat (1.4) 

where W(Q) is a standard Wiener process and the coefficients b and o are calculated by 
averaging some moments of the processes F, G /2, 4/. If the solution x0 is exponentially 
stable /5/, then convergence is observed for O<r,<m /4, 61. If stability is not 
assumed, then Xe + X0 for O<Z,< T,, where T, is independent of e /2, 4, 6/. 

The passage to the limit from (1.1) to (1.3), (1.4) has been discussed by numerous 
authors (for a detailed bibliography, see, e.g., /4/j. 

If system (1.3) is asymptotically stable (or unstable), further refinement of the 
solution is obviously useless, because small corrections do not change the qualitative 
picture of its behaviour. The construction of higher approximations is necessary in cases 
when F(X)+0 but system (1.3) is stable non-asymptotically, i.e., the deterministic sol- 
ution does not provide information on the evolution of the solution of the perturbed system 
in large time intervals. 

In what follows, we denote by x,(z) the solution of some perturbed system and by XO (7) 
the solution of an approximating system (for s-+0). The trajectories of the processes Xc(r), 
X0 (T) are in the space D,[O,bo) of functions without discontinuities of the second kind 
/3/. To prove weak convergence of xs to Xo as e-+0, it suffices to show that for any 
continuous bounded function 'p defined in D,[O,m) we have /3/ 

(I% = M, (G (7)) + M, (X0 (r)) = Q, e + 0 (1.5) 

The problem is to construct an equation that defines with prescribed accuracy the process 

X0 (r) 1 or the functional q$,, and to estimate the convergence of Q to 0,. 

2. To construct the solution, we use the asymptotic procedure of approximating the 
generating differential operator of system (1.1) /4, I, a/ combined with the method of multi- 
scale expansions /9/. We start with the necessary definitions /4, I/. 

Let v(z) be a stochastic process with trajectories in R, defined in the standard 
probability space /7/ (for brevity, we only indicate the dependence of the process on the 
argument r, omitting the dependence on the stochastic argument). Let M,V(r) be the con- 
ditional expectation of the process V(Z) given S<r. We assume that with probability of 
unity the function V(Z) is right-continuous and is non-zero only in some finite time 
interval XE 10, TI; also supM 1 V(z)1 < CU. If the process v (r) has these properties, 
then V (T) E A. 

We introduce the operator Le and its domain of definition D(Le) /4, 7/. We say that 
V E D (Le) and LeV=Y if V, Y E A and 

lim M 1 6-l tM,V (z + 6) - V (~)l - Y (@I = 0 (2.1) 
6-c 

From (2.1) it follows that /4, 7/ 

M,V (z + 6) - V (z) = 5 M,L’V (u) du 
r 

(2.2) 

and from (2.2) we have /4, 7/ 

M,,.V(X,(9))-- V(X) = i &,.Lev (X,(u)) du (2.3) 
z 

From system (1.3), the operator Le is identical with the operator 

Le = L, = F' (z)a/ax (2.4) 

and for system (1.4) it is identical with the generating differential operator of a Markov 
process 

~8 = L, = b’ (x)aiax + v, Tr A (3gava2 (2.5) 

Relationships (2.3)-(2.5) suggest a technique for calculating and comparing functionals 
on the trajectories of the perturbed and the approximating systems. 

Let XC,(%) be some Markov process with generating operator L (note that the solution of 
a deterministic system may also be treated as a Markov process /5/). As shown in /7/, if for 
any sufficiently smooth functions with a compact support v(r, X) ED (L) and any T<m, 
where 2' is independent of e, there exists a function ve (r) such that for r E lo, Tl, e -+ 0. 



1imM f V(T) - V(z, xe (z))l = 0 P.6) 
lim M 1 LeV* (t) - (da7 4 L)V (z, x8 @))I = 0 

and for a ~(O,el,z~ IO, T1 the sequence r~($ is weakly compact /3/, then the process re (r) 
is weakly convergnet as 8-+0 to the Markov process % (2) with the generating operator L. 

3. Using the technique developed in /8/, we construct an approximating operator L for 
system (1.1). Introducing a new independent variable % =a% we define on the trajectory 

5 0, a) = X& (Ta) of system (1.1) some sufficiently smooth function V(rn v,. G,) that vanishes 
outside some bounded region sr: {Q~S,Z~E IO, TI} and is uniformly bounded in its variables 
inside ST. Construct the function Ve(z,) related to V (z,, 5, .r% (x&) by the equality 

and choose the coefficients Vi and Va so that condition (2.6) is satisfied. 
If the function V is independent of zi and satisfies the equation 

NBC, + LV = 0, V (rr,, x) = ‘p (x) 

where L is the required generating operator and T is a sufficiently smooth function, then 
the estimate 

I &,,a~ (G Vz)) - I’ (0, 4 I + 0, E * 0 (3.3) 

holds if conditions (2.6) are satisfied for O<?%< T,,< T /8/. Let us construct an analogue 
of Eq.(3.2) fox the case when V depends on r1 = r&, i.e., aviaz; = f+Vx, + VT, . We write 
the equality /0/ 

Here and henceforth, the prime denotes the transpose; the arguments of the functions are 
omitted. The operator L, is defined in the same way as Le /81: 

L,V = Fra+ A-’ fMJ(d + A, z, r) - V(b, T‘, z)l 

the arguments X and z=z~,$ are treated as fixed parameters. Equality is understood in a 
weak sense of (2.1). 

To determine the generating operator L, we construct the function V so that the coef- 
ficients of a", 8-l on the right-hand side of (3.41 vanish. We have 

V,, = -(V,% -I- L,V,) (3.5) 

The function V, is chosen so as to eliminate rapidly oscillating terms from the right- 
hand side of (3.5); the function Vt should not contain terms that are secular in t. Then 
/8/ V, = V,‘EF (34 

m 

EF = j [ hltF (s, z) - MF(s,~)]8--'S[31P(s,r)-~(~)]~~ 
0 

where F is the averaging operation (1.2). Eq.(3.6) is rewritten in the form 
V, = 

where @pis the stochastic and Sp 
V,' [CBa (a 2) - SP (t, z)l 

the deterministic component of the operator EF. 
(3.7) 

From (3.5)-(3.71, using the properties of conditional expectation /3/, we obtain /8/ 

v,, + PV, = v,, i- L*V = 0 (3.8) 

Equating the second term in (3.4) to zero, we obtain the equality 

V,, = --(VW, + -fJlz'F -I- VZ'G + 4v,t (3-Q) 

and using (3.7) and (3.8) this equality is transformed to 

(3.10) 

Here the indices identify the corresponding vector components; summation over repeating 
indices is assumed. 

Eliminating rapidly oscillating terms from the right-hand side of equality (3.9) 
obtain 

, we 
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(EAij + EPjj f EB,,) + g (EKi + ES’* + EBi + EGJ (3.11) 

The operator E is defined as in (3.6), all the coefficients are evaluated at the point 
(k x) and 

Aij = 'J'wF,", P,j = @i~fF - S&j', MP+, = 0 (3.12) 
Bij = --S<pfF, P = F-j, f" = f - p 

OQiF 
Ki = rF,O, Bi = aSiF 

, 
-al,fj 

aDiF aSiF 
Pi = F fj - x Fj”> MPi=O 

I I 

After obvious algebra, we obtain 

V& + L,V = 0 

and the operator L, is defined by (2.5), where 

and by (3.12) 

4 (Z) = (Ujj (Z)}, i, j = I, . . .) ?Z 

(3.13) 

(3.14) 

which is identical with the results obtained in /2/ for I' = 0. 
From (3.4). (3.5) and (3.9) we have 

LeVe = E (R, + E&V (3.15) 

where Ri and R, may be treated as operators acting on V. 
Finally, from (3.8) and (3.13) we obtain an equation for the function V. Following the 

idea of multiscale expansions /9/, we represent 

I.e., 

av,/& f Lvo = 0, v, (T:, 5, E) = ‘p (Z) L = .TILi + L, (3.16) 

We will show that with appropriate assumptions about the coefficients of system (1.1) 
and the nature of the solution of Eq.(3.16), the estimate (3.3) holds for V = V, with 
O<Tz<T, where T is independent of E. 

4. First let us establish the conditions when (2.6) are satisfied. We will assume that 
the coefficients of system (1.1) can be represented in the form 

F 0, 4 = Fo 0, 4% (4 + f (t, 4 
G (4 4 = Go (t, 4% (t) + g 0, 4 

(4.1) 

where 5 (t)ERl is a stochastic process with zero mean and F,(t, 5) and G,(t,z) are appro- 
priately dimensioned deterministic matrices. The process E(t) satisfies the following 
mixing conditions (conditions A): 

M I Mt NE @,)I"5 @,)I", . . 5 kJ1° < cccl (4 - tjcz, (1, - t,). . 

at, (42 - Ld 
t < ti < . . . Q t,, n = 1, 2, 3 

[cp1° = 9 - M,, ME (t) = 0 

where C is a constant. 
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Conditions A are satisfied, in particular, if the components of the vector 5 (t) are 
normal Markov stationary processes or processes satisfying the strong uniform mixing condition 
(these cases have been considered in detail in 14, a/). 

The coefficients Us = Fo, f and lJ, = G,, g satisfy conditions B: 
1) The functions ui and u, together with their derivatives Us,, LJ,,, U, are bounded 

and periodic or conditionally periodic in t for tG (-m, m) uniformly in xESCR, and 
are continuous for xER, and bounded for 2fZS uniformly in tE(--oo,w). 

2) The limits (1.2), (3.14) exist uniformly in xE S. 
If v, (r, 2, *) E G,, uniformly in eE (O,e,l, then under condition A and B we obtain from 

(3.6), (3.11), (3.15) /8/ that for sufficiently small e and 22, ZEST 

where Cj and Ki are constants independent of e, 1 V,, I is the norm of the function V,(z,,x, .) 
in the space H"2,' and 1 = 4 + a. 

Thus, conditions (2.6) are satisfied if for sufficiently small e conditionc is satis- 
fied, 

1 vo b,, X, E)i < c, z,, 5 E ST (4.3) 

where C is a constant independent of e. 
For p*0, condition (4.3) may be satisfied only in some special cases. To check this 

condition, we usually must pass to the limit as e-0. The easiest case to check is 

f (t, 2) = P (t) I, F (2) = G (4.4) 

and all the eigenvalues of the matrix F are purely imaginary. Then making the change of 
variables + = exp (P?*/E) .z , we reduce Eq.(3.16) to the form (3.2) for z with coefficients that 
are conditionally periodic in %= Q/E and allow averaging over 71 /9/. The solution of 
the averaged equation is easily seen to be bounded, which gives the estimate (4.3) for the 
solution of Eq.(3.16) with the operator L,== (Pz.a/az). The passage to the limit is possible 
also in other systems with a periodic structure that allow averaging /9/. 

Assume that the more general condition C' is satisfied, which is not connected with 
specific structure of system (3.16). Suppose that estimate (4.2) applies and a function 

v0 (r,, 5) E G,, exists that satisfies Eq.(3.2) with the uniformly parabolic operator 

L = p' (x)LW& + 'i, Tr a (z)@/ax* 
such that 

I h b,, x)i < CO, h, x E ST 

lim I V, (T,, z, e) - v, (z,, x)1 = 0 
e-0 

the 

(4.5) 

Also assume that the diffusion process x0 (7,) corresponding to the generating operator 
(4.5) is regular /5/. Then, repeating the argument of /8/, we can easily show that under 
conditions A, B, C or C', the function v = v, satisfies the estimate (3.3) or the estimate 

I MO. =‘P (G V2N - G, (0, 4 I < Ce (4.6) 

for 0 Q TX < T. Here the constants C,, C and T are independent of e. 

Remark. In expansion (3.1) we retained only terms of order e and ep. 
of higher order 

Retaining terms 
e"'V,,, (t, ., %,. x&q, = Pt, m 2 3, we obtain a partial differential equation for 

the function V,, with derivatives amVOl&,,. The appearance of the higher derivatives enables 
us to estimate the deviation of the process from a diffusion process. Under appropriate 
assumptions, the estimates (2.6) and (3.3) hold in the time interval O<t< T/P. 

5. ExampZes. 1. The dynamic stability of the upper equilibrium of a pendulum with a 
vibrating suspension point (Fig.1). The equation of free oscillations of the pendulum in the 
neighbourhood of the upper equilibrium is reduced to the form 

8" + Z&WI' - [eW + EW @)I e = 0 (5.1) 

Here 0 is the angle of deflection of the pendulum, W (1) = :" (i) is the acceleration of the 
point of suspension, k' and o are physical parameters of the pendulum and E>O 1s a small 
parameter. As we know, a deterministic periodic /lo/ or conditionally periodic /ii/ dis- 
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turbance may stabilize the upper equilibrium. Consider the case when m(t) is a stochastic 
process. Following /ll/, we reduce (5.1) to standard form by making the change of variables 

e = z'1 [I + e& @)I, 81' = e [Ia i- u(t) z,l. u = 5' (5.2) 

Then Eq.(5.1) reduces to 

2,' = ez* (i - eE) 
4' = e (k’ - Ew) o1 - evq f e* (-2au + kaE) z1 + es (-%a + 5~) zz 

(5.3) 

Let : @) be a stationary normal Markov process with zero mean and bounded variance 4"; 

then v 0) and w (f) are also stationary normal Markov processes, and the velocity variance 
a, =m is assumed bounded. Therefore, the right-hand sides of system (5.3) satisfy condition A 
and all the results of Sect.2 apply. After obvious algebra, we obtain 

fl (f, z) = 22, fa (t, 5) = -_pz1. 
p = I?,' - k’ 

(5.4) 

i.e., the coefficient F(r) has the form (4.4), where the eigenvalues P~,Z of the matrix P are 
defined by the condition pa+ pa= 0. 

Therefore, for aE>k', p>O, we have pl,B = *tip", i.e., the eigenvalues of the matrix P 
lie on the imaginary axis and the system is stabilized in the time interval O<tdT/s. To 
estimate the stability, consider the following approximation. From (5.3), (5.4) and (3.14), 
we have 

Gl = 0, Cl = -2az,, R (z) = B (z) = 0 

The elements alI of the diffusion matrix (3.14) have the form 

where A, (u) is the correlation matrix of the process 
Thus 

a a 
L1= Z%~,--PXl G 

@z,’ 

” (0. 

(5.5) 

Calculating the moments of the processes from Eq.(3.16) with the operator (5.5), we 
obtain that for p>O and a>0 the system is stable in the mean, but stability in the mean 
square is determined by the condition Zap>d’. When this condition is violated, M&--rw as 
t--w and, by (5.2), M0lP-=. Therefore, a higher intensity of the random disturbance 
characterized by the parameters %,d stabilizes the mean oscillation amplitude and causes 
instability. 

2. Instability of the stationary rotation of a pendulum. The rotation of the pendulum 
(Fig.1) is described by the equation 

mu%" - ml (g + UI (1)) sin 9 $ bW = M (t) 

Here m is the mass, 1 is the length of the pendulum, b is the dissipation coefficient and 
M (t) = M0 sin et is the angular momentum. 

Introducing the small parameter E>O, we write the equation 

1 

1 

i 

of rapid rotation of the pendulum in the form 

8' = 5, $,' = 0, Z' = ah" [i t c (t)) sin 6 - e"*Sz + ey sin* 

(rpd, pg, eP=w=+, e”++&, q=n=g) 

II 
Here we have allowed for the conditions of stationarity of rapid 
rotation with the frequency e: &Yea-e, &/h,- 8, y,lo'- 8. As in the 
deterministic case, let us investigate deviations of the order of e% 

M(t) 

i 

from the stationary rotation /12/. 

n(t) Introducing new variables 6 and s by the formulas 
e-l#=il,.z--e=~z, p=e% 

Fig.1 we obtain a standard-form equation with the small parameter u, 
6' = PZ, 6 (0) = A (5.6) 
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I’ = ph* I1 f t (t)l sin (et + 6) - p*Bw + py sin et + $ . ., 1: (0) = D 
The averaged Eq.(1.3) for system (5.6) takes the form 6'=1& I'=% i.e., random per- 

turbations do not affect the velocity of rotation. Computing the second-approximation terms, 
we obtain 

and Eq.(3.16) takes the form 

(5.7) 

The boundary conditions 
v, (Tp, 1. 6, p) = cp (z), 2* = I*st = et (5.8) 

characterize the change of rotation velocity. 
Eq.15.7) can be averaged over the fast variable 6 /91. The averaged equation has the 

f0rm 
&,/a~~ - fk&Qdz + l/*~¶~~~~/a~ = 0, ~0 (Ta. 2) = 1 (2) f5.91 

The generating operator of (5.9) corresponds to the diffusion process 
dxO = -_Bodz, + odw, so (0) = P (5.10) 

From (5.9) it follows that &=(Q- Bozo), i.e., random disturbances do not influence 
the motion of the system on average. The velocity variance in turn is given by D,=(M%'- 
(Mz#l = oer,. Thus, without dissipation, the velocity of rotation remains constant (in the 
mean), but the random disturbances produce non-stationary rotation, because 1),-m as t-+oo 

1. 

2. 

3. 
4. 

5. 

6. 

7. 

8. 

9. 

KHAS'MINSKII R.Z., On stochastic processes defined by differential equations with a small 
parameter, Teoriya Veroyatnostei i Ee Primeneniya, 11, 2, 1966. 

KHAS'MINSKII R.Z., Limiting theorem for the solution of differential equations with a 
stochastic right-hand side. Teoriya Veroyatnostei i Ee Primeneniya, 11, 3, 1966. 

BILLINGSLEY P., Convergence of Probability Measures, Wiley, New York, 1968. 
KUSHNER H.J., Approximation and Weak Convergence Methods for Random Processes with 
Applications to Stochastic Systems Theory. MIT Press, Cambridge, Mass., 1984. 

KHAS'MINSKII R.Z., Stability of Systems of Differential Equations with Random Disturbances 
of Their Parameters, Nauka, Moscow, 1969. 

BLANKENSHIP G. and PAPANICOLAOU G.C., Stability and control of stochastic systems with 
wideband noise disturbances, SIAN J. Appl. Math,, 34, 3, 1978. 

ETHIER S.N. and KURTZ T-G., Narkov Processes: Characterization and Convergence, Wiley, 
New York, 1986. 

KOVALEVA A.S., On the separation of motions in non-linear oscillatory systems with a 
random perturbation, PMM, 54, 4, 1990. 

BENSOUSSAN A., LIONS J.-P. and PAPANICOLAOU G.C., Asymptotic Analysis for Periodic 
Structures, North-Holland, Amsterdam, 1978. 

10. LANDAU L.D. and LIFSHITS E.M., Theoretical Physics, 1, Mechanics, Nauka, Moscow, 1970. 
11. K~SNOSEL'SKIX M.A., BURD B.S.X., and KOLESOV YU.S., Non-linear Almost Periodic Oscil- 

lations, Nauka, Moscow, 1970. 
12. ZHURAVLEV V.F. and KLIMOV D.M., Applied Methods in Oscillation Theory, Nauka, Moscow, 

1988. 

REFERENCES 

Translated by 2-L. 


